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Abstract— Whiskered mammals such as rats are experts in
tactile perception. By actively palpating surfaces with their
whiskers, rats and mice are capable of acute texture discrim-
ination and shape perception. We present a novel system for
investigating whisker-object contacts repeatably and reliably.
Using an XY positioning robot and a biomimetic artificial
whisker we can generate signals for different whisker-object
contacts under a wide range of conditions. Our system is also
capable of dynamically altering the velocity and direction of
the contact based on sensory signals. This provides a means for
investigating sensory motor interaction in the tactile domain.
Here we implement active contact control, and investigate the
effect that speed has on radial distance estimation when using
different features for classification. In the case of a moving
object contacting a whisker, magnitude of deflection can be
ambiguous in distinguishing a nearby object moving slowly
from a more distant object moving rapidly. This ambiguity can
be resolved by finding robust features for contact speed, which
then informs classification of radial distance. Our results are
verified on a dataset from SCRATCHbot, a whiskered mobile
robot. Building whiskered robots and modelling these tactile
perception capabilities would allow exploration and navigation
in environments where other sensory modalities are impaired,
for example in dark, dusty or loud environments such as
disaster areas.

INTRODUCTION

To operate successfully in nocturnal or poorly-lit envi-
ronments many animals have evolved non-visual sensory
capacities, some of which have yet to be successfully
replicated in robots. For instance, rodents, such as mice
and rats, have evolved sophisticated tactile sensing systems
based around their facial whiskers (known as vibrissae). Be-
havioural experiments have demonstrated that these animals
can make judgements about the tactile properties of objects
and surfaces with impressive accuracy. For instance, rats
can extract the identity of a 30µm grating texture, in the
dark, based on just one to three touches per whisker [5];
can display accurate judgments of a texture within 100 ms
of initial whisker contact [3]; and can accurately determine
object location in the whisker field [25][26][16]. Similarly,
the Etruscan shrew - the smallest living mammal - can
recognise and localise prey animals (insects) from a small
number of fleeting whisker contacts, sufficient to allow fast
and precisely targeted attacks [1]. Processing can also be
very fast. For instance in the mouse, whisker contact signals
can reach the barrel cortex – from where they can begin
to affect processing in behaviour-related areas such as the
motor cortex, the superior colliculus, and cerebellum – in just
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Fig. 1. The XY positioning robot. The whisker was deflected by the
robot along the X axis through movements in a clockwise or anticlockwise
direction as viewed from above.

7 milliseconds [10]. Robots with tactile sensing capabilities
approaching those of rodents would excel in environments
where many other sensory modalities are impaired. In dusty,
smoky or loud environments such as disaster areas and war
zones where sensory systems operating in the modalities of
sight and sound may be compromised. Whiskers themselves
are inexpensive, mechanically simple elements. Whiskers
have no sensory elements along their length, deflections are
processed by sensors at the base, making them relatively
robust to damage. In contrast, an artificial hand will have
sensor elements at or near the tips of its digits where they
will be much more vulnerable to wear and tear. Together
these features make whisker based tactile sensors ideal for
mobile robotics.

Recent years have seen many whiskered robots being
developed (for example, SCRATCHbot [20] [21]), addressing
numerous aspects of tactile perception (see [22] for a recent
review). Previous work has shown that information about
texture, distance to contact, and shape can be extracted from
signals obtained when an artificial whisker is moved against
a surface [12][11][15][7][17][9].

The XY positioning robot

Developing more sophisticated models of whisker-based
perception has been problematic. In modalities such as vision
and audition it is generally quite easy to present stimuli to
a passive sensor on a robot, or images and tones can be
simulated and used to train a computational model. There



is no obvious analog for tactile stimuli, and the true nature
of whisker-object interactions is too poorly understood to
be simulated accurately. Whiskers are especially difficult
to simulate, as they have very low mass but high spring
constants when modelled as a series of masses on rotational
springs, leading to numerical instabilities. Additionally when
the parameters of a whisker-object contact become more
numerous (e.g. speed and radial distance to contact, surface
texture, orientation and softness etc) it becomes very difficult
to constrain the contact and generate reliable signals in either
simulated or physical robots. For these reasons acquiring
sufficient examples of carefully controlled whisker contacts
with tactile stimuli to train models and classifiers has proved
difficult. We present a novel system for generating large,
repeatable, sets of deflection signals from whisker-object
contacts. An XY positioning robot is programmed to move
objects into an artificial whisker sensor Fig.1. Deflections for
the whisker are streamed to a PC, and can be processed in
real time to control subsequent robot movement.

Under passive deflections an object moved by the robot
arm makes contact with the artificial whisker and deflects
the whisker through a large angle. When deflection reaches
a critical point the whisker loses friction with the object,
deforms and deflects past the object and goes through
oscillatory ringing until the energy dissipates and the whisker
comes to rest.

However, in addition to passive touch experiments we are
also able to use our experimental setup to investigate active
sensing. In this case we mimic a control policy that we
have observed in rats in our own laboratory whereby the
protraction of a whisker ceases rapidly on contact with a
surface and whisker then begins to retract [19]. In contrast
to the passive case, this policy, which we call Minimal Im-
pingement (MI), keeps the amplitude and duration of whisker
deflection within a limited range, and also keeps whisker
ringing after contact to a minimum. An additional benefit
is that the forces acting on the whisker are much smaller,
meaning whisker breakage is less likely – an important
consideration for autonomous robotics.

Having established our motivation and methodological
direction, the remainder of this paper describes our initial
experiments exploring the space of whisker-object contacts,
and the feature based classifiers we have developed to
reliably encode this space. The classifiers are then verified
on a preliminary data set from the SCRATCHbot whiskered
robot [20].

METHODS

An XY positioning robot (Yamaha-PXYX, Yamaha
Robotics) (see Fig.1) was used to move objects into the
whisker. The robot has a movement range of 350×650mm,
and can move up to 720mm/s. Repeatability of the robot
is ±0.01mm, and the maximum load it can carry is 1.5kg.
Objects are carried by the robot into an artificial whisker
fixed to the table, as this allows us to control the con-
tact as carefully as possible. Moving the whisker into an
object would cause the whisker to oscillate unpredictably

Fig. 2. Diagram of the artificial whisker Hall effect sensor.

during movement between contacts, and as a result each
contact would be slightly different. A controller (Yamaha
RCX 222, 2-axis robot controller) takes instructions from
a PC through an RS232 cable, and the controller interprets
the instructions, completes path integration, and drives the
motors. Instructions for the robot are generated inside a
MATLAB (www.mathworks.com) loop, and can be easily
updated during robot operation, for example to react to
whisker input.

The Whisker

A whisker sensor was taken from the SCRATCHbot robot
platform [20][22]. Technical details of the whisker can be
found in [7]. A tapered, flexible plastic whisker shaft, ≈5
times scale models of a rat whisker (185mm long, linearly
tapered from a diameter of 0.5mm at the tip to 3mm at
the base), was mounted into an inflexible rubber-filled tube,
or ‘follicle’ case. A tri-axis Hall effect sensor (Melexis
MLX90333 [18]) mounted in the follicle case measures the
deflection of a magnet fixed to the base of the whisker shaft
Fig.2. The Hall effect sensor IC was programmed to generate
two voltages, the magnitudes of which being proportional
to the two orthogonal displacement angles (α,β ) of the
magnet from its resting position above the sensor (see Fig.
2). As forces are applied to the whisker shaft, the moment
experienced at the base will rotate the magnet around the
pivot point, nominally in the centre of the polyurethane
bearing. A trigonometric operation in the DSP core of the
Hall sensor IC decouples the alpha and beta angles and
removes the z-component introduced by the arc of travel of
the magnet, as indicated by the blue dotted line in Fig. 2.
This operation ensures that the output voltages from the IC
are linearly proportional to the tangent component of the
alpha and beta angles, or x and y as they will be referred to
hereafter.

Data

Deflections of the whisker were transmitted through the
hall effect sensors to a LabJack UE9 USB data acquisition
card (www.labjack.com) at a rate of 1 kHz for each of
the x and y directions. Each trial lasted 4s. This data was



sent to a computer through the BRAHMS middle-ware
(brahms.sourceforge.net) for analysis in MATLAB.

Robot control

Minimal impingement was implemented by instructing
the robot to move an object into the whisker at a given
speed until a deflection threshold is crossed, at which point
the robot retracts the object as fast as possible (720mm/s).
Temporal latency for the loop is ≈ 300ms from initial contact
due to the controller duty cycle.

The task

Preliminary investigations highlighted that the closest con-
tact that could be made by the whisker at without saturating
the Hall effect sensor very quickly was ≈80mm from the
base. Contacts at less than 5mm from the tip did not deflect
the base of the whisker for long enough before slipping
past to allow an MI type contact. Therefore, the 185mm
length whiskers provide a 100mm range of radial distances.
Contact speeds above 216mm/s either cause the whisker
to slip past the object before a retraction, or saturates the
sensors. 36mm/s was the lower bound on the speed for
practical reasons. Contacts were sampled at radial distance
intervals of 1mm, and speed intervals of ≈7mm/s over the
previously described ranges. In total 101 radial distances
and 26 speeds were sampled, giving 2626 different radial
distance and speed combinations. Contact combinations were
randomly interleaved to limit any affects of whisker proper-
ties changing over time. For each contact combination the
whisker was deflected by the robot in both a clockwise and
anticlockwise directions (-ve and +ve in x, see Fig.1 ), ensur-
ing that the whisker did not bend over time through repeated
unilateral deflections. The experiment was performed twice
to generate sufficient data for classification. Data from each
trial was stored separately. Deflections from the clockwise
robot movement trials (-ve in x) were converted so all data
samples were equivalent. Trials were ordered into arrays by
speed and radial distance to contact. Each trial was aligned
to peak deflection, and shortened to only the 325ms either
side of the peak deflection.

Speed of contact confounds radial distance detection

The object properties we chose to manipulate and recog-
nise were radial distance to contact from the base, and
contact speed. The task is to recognise these two parameters
simultaneously under varying conditions.

Previous work [2][14][28] has shown that a rat could
encode the radial distance to contact along a whisker by
monitoring the magnitude of forces (or moments) at the base.
Others have suggested that the increased firing rate of cells
in the whisker sensory nerve, for contacts close to the base,
could be due to the increased moments at the whisker base,
indicating that this moment information is available to the
rat [26]. In controlled experiments it has been shown that a
rat can discriminate apertures of different widths, down to a
difference of ≈3mm [16]. When modelled as a cylindrical
elastic beam, the relationship between radial distance to
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Example deflection signals from the artificial whisker
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Fig. 3. Example deflection signals from the artificial whisker. Magnitude
of deflection, or force, has been used as a discriminator of radial distance
to contact. Here the two traces are at different radial distances, but create
the same magnitude of deflection.

contact r, moment (or torque) at the base M and whisker
deflection angle θ can be expressed [13] as;

r = 3EIbase
θ

M
, (1)

where E is the elastic modulus, and Ibase is the area moment
of inertia at the base of the whisker. In this equation the
interaction of deflection angle θ and M gives you a value
for radial distance to contact. However, the equation would
need to be modified to account for situations where contact
speed is a variable.

Static beam equations, and analyses relying on instanta-
neous measures of moments only account for the dynamic
properties of objects if two observations are made. If an
object collides with a whisker at the same location but at
different speeds it will induce different forces at the base.
For example, under the right conditions the moment at the
base will be the same for a slowly moving object contacting
near the base, and a quick object near the tip (see Fig.3 for
a demonstration of this).

This ambiguity in the signal cannot be accounted for with
a single observation, an additional observation, or invariant
feature in the signal, must be found in order to discriminate
these two properties of the collision. For example by taking
rate of change of moment and θ , or by taking the longitudinal
force [24][4].

In the present study we find features in the data that
correspond to radial distance to contact and object speed.
Successful classification relies either on finding the contact
speed before conducting a radial distance estimation, or
discriminating two properties simultaneously (e.g. [8]). In
the analysis we assess simple feature-based classifiers, and
compare the performance of different features in isolation
and combination.
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Fig. 4. A contour plot of peak deflection magnitude and duration for each contact. Each point in the image corresponds to a location in the speed-radial
distance space which is equivalent in both plots. (a) Peak deflection magnitude f1, brightness indicates higher deflection magnitude, measured in volts. (b)
Deflection duration f2, brightness indicates greater duration (measured in ms).

RESULTS

The data were separated into training and test sets that
were each 2 complete data sets of 26 speeds and 101 radial
distances. Signals were placed in the training or test sets at
random from the original data. For each feature, classifiers
were developed on the training sets, and performance was
determined on the test set.

Feature based classifiers

Inspection of the data showed that peak deflection magni-
tude could be used as a feature for radial distance discrimina-
tion at a given speed. Deflection magnitude was taken as the
Hall effect sensor output voltage at peak deflection, which
is proportional to the bending moment. Feature f1 can be
defined as,

f1 = maxtθ(t), (2)

where θ(t) is the deflection magnitude varying with time,
measured by the Hall effect sensor in volts. Note that t( f1) =
t(maxtθ(t))

Similarly, contact speed could be discriminated using
deflection duration. Deflection duration was taken as the
width of the deflection peak (prominent initial deflection in
each trace of Fig.3). Deflection duration was measured using
a threshold crossing on the sensor output. When Hall effect
sensor output exceeded 0.05V a timer was initiated (t1), and
when Hall output subsequently fell below this threshold the
timer was stopped (t2). Feature f2 can be defined as,

t1 = min{t : θ(t)≥ γ}, (3)

t2 = min{t : θ(t)≤ γ, t2 > t1}, (4)

f2 = t2− t1, (5)

where γ is the threshold and f2 was measured in ms. Fig.4
shows the object-contact space for f1 and f2 in graphical
format.

As an additional feature peak rate of change of deflection
θ̇(t) was used. Rate of change of moment Ṁ and deflection
angle θ̇ have each been proposed as biologically plausible
alternatives to the absolute values used in elastic beam
equations for radial distance detection (Eq. 1) [13] [23].
Since the output of the Hall effect sensor corresponds to
deflection magnitude, which is in itself proportional to the
bending moment, we found a proxy for rate of change of
moment by computing the rate of change of deflection of the
whisker, θ̇(t). To generate θ̇ each input signal was down-
sampled to 100Hz, a derivative was taken and the peak
derivative from the protraction period of each trial was taken
as θ̇(t). Feature f3 can be defined as,

f3 = maxt θ̇(t), (6)

for each trial the peak θ̇ was taken during the initial
deflection of the whisker, t < t( f1), where t( f1) is the time
at which the f1 occurs.



A model was generated of the relationship between each
feature and the corresponding contact property by fitting
a cubic polynomial to the training data in MATLAB, for
example to find an estimate of radial distance r̂,

r̂ = a3 f 3
1 +a2 f 2

1 +a1 f1 +a0, (7)

was fitted to the data with a linear-in-the-parameters regres-
sion on the cubic, to find (a0,a1,a2,a3) by least squares.

In the case of simultaneous radius and speed classification,
speed is classified first with f2, then radial distance is
classified with a model fitted to a smaller region of the f1
or f3 space.

Classification performance

Fig. 4 shows features f1 and f2 for each radius and
speed combination. Looking at both plots at the same time
shows the interaction of deflection magnitude and duration
across the feature spaces. Alone, deflection magnitude f1
is an ambiguous predictor for radial distance Fig. 4(a). By
using deflection duration f2 as a measure of speed Fig.
4(b), it is possible to limit the region of Fig. 4(a) over
which to perform the radial distance discrimination, thus
improving classification. The results of the classification are
summarised in Table I.

Single feature classification

When used alone, peak deflection magnitude f1 allows
discrimination of 46% of inputs to within 10mm over the
101mm range. Mean error was 13.6 mm. Deflection duration
f2 was capable of classifying 98% of inputs to within
70mm/s for speed, over the 216mm/s range. Mean error here
was 20mm/s. Classification of radial distance based on rate
of change of deflection magnitude f3 was successful in 50%
of inputs to within 10mm over the 101mm range. Mean error
was 15.6mm.

Multi-feature classification

In each case combining classifiers improved radial dis-
tance detection. Combining deflection duration f2 and peak
deflection magnitude f1 results in improved radial distance
classification of 74% to within 10mm. Mean error was
reduced to 8.4mm.

Combining deflection duration f2 classification with rate
of change of deflection f3 again results in improved radial
distance classification of 54% to within 10mm. Mean error
was reduced to 11.4mm.

Histograms of mean errors for classification are shown in
Fig.5.

TABLE I
MEAN CLASSIFICATION PERFORMANCE FOR EACH CONDITION OVER

DIFFERENT VERIFICATION WINDOWS.

% Correct f1 f1 + f2 f3 f3 + f2
≤ 5mm 23.6% 45.2% 28.1% 36.0%
≤ 10mm 46.1% 74.4% 50.0% 54.4%
≤ 15mm 46.2% 74.5% 50.1% 54.5%
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Fig. 5. Histograms of the mean error for radial distance classification
in each condition. Combining each classifier with a discriminator for speed
improved classification, both by decreasing the mean (moving the histogram
peak towards zero) and by reducing variance (width of the histogram).

Verification on SCRATCHbot data

A small dataset was collected on the SCRATCHbot
whiskered robot platform [22][21][20]. The robot was kept
stationary while it whisked into a vertical pole at 3 different
radial distances (70, 100 and 130mm), and 3 whisk speeds
(2, 4 and 6Hz). This dataset is too small to do an analysis
similar to that conducted on the XY table data, but some
useful insights can be gained from it. SCRATCHbot data was
inspected to see whether the same features found in the XY
table generated signals would be present in a less well con-
strained situation (see Fig. 7). A key difference between data
from SCRATCHbot and that from the XY table is the way
whisker speed affects contact duration. Since SCRATCHbot
is performing active whisking, increased whisk speed results
in a shorter contact duration. However, though the direction
of the relationship is reversed, whisk speed still predictably
affects contact duration. As in the XY table data, whisking
at the same radial distance but different speeds affects peak
deflection magnitude (as can be seen in Fig. 7(b)). On
SCRATCHbot, as on the XY table, accurate radial distance
estimation must involve taking whisker contact speed into
account.

DISCUSSION AND CONCLUDING REMARKS

The results presented here compare favourably with the
sensory capabilities of rats. Rats have been shown to be
capable of discriminating apertures differing in width by
5mm, corresponding to a radial distance difference of 2.5mm
per whisker [16]. Since the longest rat whiskers are 50–
60mm in length, a 2.5mm discrimination corresponds to an
acuity of ≈4–5% of whisker length. A discrimination acuity
of 8.4mm on an 185mm whisker corresponds to an acuity
4.5% of whisker length.

It is important to consider that a rat has ≈30 whiskers on
each side of its head. Combining information from multiple
whiskers may improve the reliability of classification, for
example by providing a means to remove independent noise
from the signal. This is an approach we hope to investigate
in the future.

Rate of change of moment has been proposed [2] as a
biologically plausible method of measuring radial distance



Fig. 6. The SCRATCHbot whiskered mobile robot. To collect data for this
experiment the robot platform was kept stationary while it whisked into a
pole at varying radial distances to contact, and whisk speed.
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Fig. 7. Properties of the deflections match closely to those from the XY
table. (a) 3 deflections at different radial distances (R, in mm), but the
same speed (S, in Hz). Peak deflection height varies predictably with radial
distance. (b) 3 deflections at the same radial distance but at different speeds.
Contact duration varies predictably with speed.

to contact, as biological systems are poor at measuring
absolute values. Though performance of a classifier using θ̇

information is poorer than that of a classifier using absolute
values, it is still well above chance (chance performance =
20% success to within 10 mm). Classifier performance is
improved when combined with an additional speed of contact
feature, f2.

When trying to discern a whisker contact property, such as
radial distance to contact, any observation that a classification
can be based on will always be affected by the nature of the
contact. In the rat whisker system, contacts are adaptively
controlled [19]. Though the true purpose of this control
is not entirely understood, it is clear that whisker contact
speed and force has a large impact on the signals that are
produced at the base. We have shown previously that whisker
contact speed, and object location have an effect on whisker
based texture discrimination [12][7], and that interacting with
a surface within certain ranges of speed and at particular
regions of the whisker may indicate a ‘sweet spot’ of whisker
object interaction [8]. The rat may be adaptively controlling

whisker movement to constrain the ambiguity in the vibrissa
deflection signals.

Though in artificial whiskers deflection signals are am-
biguous under certain conditions, it is possible to discern
certain contact properties from robust features. Subsequent
classification can be improved when these contact features
are taken into account. Data from the SCRATCHbot robot
platform shows that the features found in analysis of XY
table data still apply. Going forward we hope to test these
classifiers more thoroughly on SCRATCHbot in task based
situations. Robust reports of local object features can then
be used as inputs to a system of tactile SLAM [6][27].

Steps have been made to explore whisker-object contact
space, and in future we hope to utilise the XY table system
presently described to investigate further object properties.
Knowing contact speed allows better radial distance estima-
tion, which in turn can be used for the discrimination of
corners and surface curvature [23]. Discerning the orientation
and location of a surface is critical to the discrimination of
texture [12]. It is clear that whisker based tactile perception is
critically dependent on properties of whisker-object contact.
In autonomous robotics, reciprocal sensory motor interaction
of this sort can be used to maximise the sensitivity and reli-
ability of a system. Simultaneous speed and radial distance
detection is a step towards this goal.
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