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Tactile quality control with biomimetic active touch
Nathan F. Lepora, Member, IEEE, Benjamin Ward-Cherrier, Student Member, IEEE

Abstract—Fully autonomous factories of the future will need
automated quality control processes to monitor products during
manufacture. Here we demonstrate that an artificial tactile
system offers a solution to autonomous quality inspection, using
a biomimetic tactile fingertip mounted as end-effector on an
industrial arm. The study considers a task of gap width inspection
suitable for judging parts alignment, although the methods
apply generally. An active perception method implements optimal
decision making while controlling sensor location, which was
recently shown to attain superresolved spatial perception. In
consequence, gap width is estimated to sub-millimeter accuracy
comparable to human discrimination performance and is robust
to uncertainty in test object placement. We conclude that an
artificial tactile system of the type here offers an ideal solution
to automated quality control on the production line.

Index Terms—Force and Tactile Sensing; Biomimetics

I. INTRODUCTION

Apotentially important application area for artificial tactile
fingertips is to explore and inspect surfaces of interest,

for example as part of a manufacturing production process. An
influential modern view in production is that the process used
to manufacture a product is a key determiner of quality [1], a
view proposed to counterbalance the traditional perspective
that quality is determined mainly by design. From a view
of enabling greater quality in production, we consider here
a tactile surface inspection robot comprising a biomimetic
fingertip mounted as an end-effector on a robot arm (Fig. 1).

Autonomous surface inspection is well-studied in the field
of non-destructive testing with non-contact methods such as
microwaves [2] and ultrasound [3]. An important example
application is gap and step quality control between assembled
panels in automotive manufacturing, where state-of-the-art
devices include laser scanners and image mapping systems.
Optical devices, by virtue of not contacting the surface, are
necessarily indirect. However, there can be complexities when
adjacent surfaces differ in reflectivity or are transparent, and
so the human sense of touch is still commonly used on the
production line (Fig. 2).

This letter demonstrates that artificial tactile systems offer
an accurate and reliable solution to automated quality control.
Because artificial touch sensing relies on direct surface contact,
issues complicating optical and other indirect methods are
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Fig. 1: Tactile quality control robot, comprising a tactile
fingertip (the TacTip) mounted as end effector on a robot arm.

Fig. 2: Tactile quality control on a production line.

avoided. The advantages of human touch for quality control
that underlie its use on the production line can be leveraged,
while limitations arising from human operators (cost, fatigue,
subjectivity) can be addressed with an artificial system.

This study considers a specific task of gap width inspection,
although the methods apply more generally. The task here is
to identify a gap of unknown width (range 0.25-5 mm) with
unknown contact depth (range 0-5.5 mm) below the tactile
sensor (Fig. 4), using repeated taps of a biomimetic tactile
fingertip. An active perception method is used to implement
optimal decision making while controlling sensor location [4],
[5], which was recently shown to attain superresolved spatial
perception [6], [7]. In consequence, gap width is estimated
to 0.35 mm, which is comparable to human discrimination
performance. Thus, an artificial tactile system of the type here
offers an accurate and reliable solution to automated quality
control on the production line.
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Fig. 3: Diagram of the TacTip (left) with pins shown on the
inside surface of a silicon membrane, which are LED illumi-
nated and imaged by an internal camera. The right diagram
is a representation of the deformation of the membrane as the
finger pad impinges on a test object (a gap stimulus).

II. BACKGROUND AND RELATED WORK

Our approach for artificial touch sensing uses a statistical
framework in which training data is first sampled from ex-
emplar stimuli and then used to identify unknown stimuli.
The statistical approach is combined with active perception to
control how the sensor contacts the stimulus during sensing,
and used with biomimetic tactile fingertips.

Statistical approaches can be viewed as contrasting with
‘model-based’ approaches for identifying tactile stimuli.
Model-based approaches use an inverse physical model of the
sensor response to infer the stimulus [8], [9]; hence, they
generalize over many stimuli, but physical models can be
complicated and difficult to fit or invert. In contrast, statistical
approaches sample the environment directly and use Bayes’
rule for the inversion; hence, the models are relatively easy to
obtain, but are specialist to the type of stimuli trained over.
For example, training with gap stimuli would not generalize
well to testing over curvature.

Active perception [10] is a key part of attaining good
accuracy in the gap detection task considered here, referring
to a combination of interpreting the sensory data with control
based on the interpreted tactile data [11], [12]. The benefit
of active perception is that the control of the tactile sensor
can aid the interpretation of the sensory data, for example by
making a more informative contact with a stimulus. Recent
work on active touch with biomimetic fingertips has focussed
on algorithms for sensor control and perception. An artificial
finger that dynamically feels texture [13] used a neural net-
work controller for curiosity-driven exploration to learn motor
skills for active perception [14]. Another study used closed
loop control of exploratory movements with a biomimetic
fingertip to discriminate compliance [15].

A benefit of statistical approaches is that they combine
readily with active perception. One example, termed Bayesian
exploration, selects tactile data (modulating speed and con-
tact force) that disambiguates a leading percept from its
alternatives [16]. Another approach, termed active Bayesian
perception, sets a control policy to guide sensor location
(‘where’) during optimal decision making of object identity

Fig. 4: Stimulus for assessing gap width. 20 gaps of widths
0.25 mm to 5 mm (in 0.25 mm equal steps) are laser cut in a
perspex sheet. Each gap has length 30 mm, sufficient to span
the 40 mm TacTip width.

(‘what’) [4], [5], typically fixating the sensor over the object.
This latter method is robust to position uncertainty [5] and
can result in superresolved spatial perception surpassing the
sensor resolution [6], [7], motivating its use here.

Active touch has been demonstrated on several biomimetic
fingertips having discrete tactile elements (taxels), including
capacitive sensors (e.g. iCub fingertip) [4]–[6], MEMS sen-
sors [13] and barometric sensors (e.g. biotac) [15], [16]. Here
we use an optical tactile sensor called the TacTip (Tactile
fingerTip) developed at Bristol Robotics Laboratory [7], [17]–
[19]. The TacTip’s principal novelty as an optical tactile
sensor is that it has an array of pins molded inside the skin
that indicate deformations of the surface, with displacements
analogous to sensor readings from taxel-based devices.

III. METHODS

A. Details of the tactile sensor and data collection

1) The Tactile fingertip: The TacTip is an optical tactile
sensor that has several highly useful properties (Fig. 3):
(i) the casing is 3D-printed and hence readily customizable
and inexpensive; (ii) it uses a standard CCD web-camera
(LifeCam Cinema HD, Microsoft) to collect data, which is
also inexpensive and connects to a PC via a USB interface;
(iii) it has a molded silicon outer membrane that is robust to
wear and easily replaced if damaged; and (iv) between the
outer membrane and the electronics is a clear compliant gel
(RTV27906, Techsil UK) that enables tactile sensing through
compression and protects the delicate parts of the sensor.

The design of the TacTip used here has a 40 mm diam-
eter hemispherical sensor pad with 532 pins arrayed on its
underside (of which 40 are selected for analysis). Six LEDs
mounted on a ring around the base of the pad illuminate the
pins, whose tips have been coated with white paint to contrast
with the black silicon outer membrane.

2) Data collection: The TacTip is mounted as an end-
effector on a six degree-of-freedom robot arm (IRB 120, ABB
Robotics) that can precisely and repeatedly position the sensor
(absolute repeatability 0.01 mm).
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Fig. 5: Left: typical image captured by the internal camera.
Right: filtered image with just 40 pins tracked (shown in red).

The test stimuli are 20 gaps of width 0.25 mm to 5 mm
in 0.25 mm steps (Fig. 4). These were laser cut into a flat
perspex sheet at 30 mm intervals. The TacTip was mounted
with its (hemispherical) sensing surface oriented downwards
in the direction of tapping motion normal to the sheet. Data
were collected while the tactile sensor tapped 6 mm down onto
the test gap followed by a move back up, then a 0.05 mm
downwards displacement before the next tap. Altogether 110
taps were made per gap over 5.5 mm (110 taps), with a 2 sec
time series of pressure readings (Nsamples = 40) taken for
each tap. All data used in this letter were collected twice to
give distinct training and test sets, ensuring that all results are
based on sampling from an independent data set to that used
to train the classifier.

3) Data preprocessing: The TacTip collects tactile data
as images (resolution 640×480 pixels, sampled at ∼20 fps),
which are filtered to detect and track displacements of pins
molded to the underside of the outer membrane. Images were
captured and preprocessed using opencv (http://opencv.org/).
For pin detection, a Gaussian spatial filter with adaptive
threshold was applied to each image; the adaptive threshold
allowed for varying luminosity across the image field (Fig. 5).
For pin tracking, the Lucas-Kanade algorithm was applied
to Nsamples = 40 consecutive images for each tap, to give
the optical flow of pins during the contact. Individual pin
displacements were then inferred by integrating the flow field
from the initial pin locations.

A subset of the 532 detected pins were used as tactile
elements (Fig. 5), reducing computational requirements and
removing data redundancy. 40 selected pins were chosen with
at least 4 mm separation (shown colored in Figs. 7). The two-
dimensional sx and sy displacements of these pins sk(j) are
treated as distinct data dimensions, with 1 ≤ k ≤ Ndim = 80
and 1 ≤ j ≤ Nsamples = 40.

B. Active and passive biomimetic tactile perception

We use a Bayesian approach for biomimetic tactile percep-
tion based on sequential analysis methods for optimal decision
making [20]. Sequential analysis is a statistical technique
for hypothesis selection over sequentially sampled data until
reaching a stopping condition [21], which commonly takes the
form of a threshold on the posterior belief.

Active biomimetic perception [4]–[7] accumulates belief for
the perceptual classes by successively contacting the stimulus

Fig. 6: Biomimetic active perception implements a sensation-
action loop that accumulates evidence for multiple distinct per-
ceptual hypotheses while a control policy selects appropriate
actions to relocate the sensor based on that evidence.

until a posterior belief reaches threshold while utilizing a
posterior-dependent control policy to move the sensor (Fig. 3).
In previous work on tactile superresolution, only perception
over location was considered [6], [7]; here, we consider
perception over both stimulus location xl (depth) and identity
wi (gap width), represented by class pairs (xl, wi).

Formally, the perception algorithms apply to sequences of
contact data z1:t = {z1, · · · , zt}, with each contact encoded
as an Ndim-dimensional time series of sensor values,

zt = {sk(j) : 1 ≤ j ≤ Nsamples, 1 ≤ k ≤ Ndim}, (1)

with indices j, k labeling the sample and data dimension, and
Nsamples is the number of time samples in a contact.

The following analysis gives a Bayesian estimation of
location xl, 1 ≤ l ≤ Nloc and identity wi, 1 ≤ l ≤ Nid of an
object, considered one of a set of distinct punctual locations
and stimulus identities (here Nloc = 11 locations spanning
5.5 mm and Nloc = 20 gap identities are used).

1) Measurement model and likelihood estimation: The like-
lihoods P (zt|xl, wi) of contact data zt being from a location
and identity class (xl, wi) assume a measurement model that
averages the individual log-probabilities for each sample over
the training data,

logP (zt|xl, wi) =

Ndim∑
k=1

Nsamples∑
j=1

logPk(sk(j)|xl, wi)

NsamplesNdim
. (2)

Following other work on robot tactile perception [20], [22],
[23], the sample distributions Pk(sk|xl, wi) are found with a
histogram method. Binning the sensor values sk (for dimen-
sion k) into equal intervals Ib, 1 ≤ b ≤ Nbins over their range
(here Nbins = 100), the histogram counts nkli(b) are over all
training data in that location and identity class,

Pk(sk|xl, wi) = Pk(b|xl, wi) =
nkli(b) + ε∑Nbins

b=1 nkli(b)
, (3)

appropriately normalized so that
∑Nbins

b=1 Pk(b|xl, wi) = 1.
A small regularization constant ε � 1 ensures that all log
likelihoods (2) are well-defined if any histogram bin is empty.
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2) Bayesian belief update: Bayes’ rule is used after each
successive test contact zt to recursively update the posterior
beliefs P (xl, wi|z1:t) for the perceptual classes with the like-
lihoods P (zt|xl, wi) of that contact data

P (xl, wi|z1:t) =
P (zt|xl, wi)P (xl, wi|z1:t−1)

P (zt|z1:t−1)
, (4)

from background information given by the prior location
beliefs P (xl, wi|z1:t−1) (i.e. the posterior beliefs from the
preceding contact). The marginal probabilities are given by

P (zt|z1:t−1) =

Nid,Nloc∑
i,l=1

P (zt|xl, wi)P (xl, wi|z1:t−1). (5)

A sequence of contacts z1, · · · , zt results in a sequence of
posterior beliefs P (xl, wi|z1), · · · , P (xl, wi|z1:t) initialized
from uniform priors P (xl, wi|z0) = 1/NlocNid.

3) Final decision: Here the task is to determine identity
(gap width), and so the stopping condition uses the marginal
identity beliefs summed over all location classes,

P (wi|z1:t) =

Nloc∑
l=1

P (xl, wi|z1:t). (6)

Then the Bayesian update (4,5) stops with decision wdec when
the identity belief passes a decision threshold θdec:

if any P (wi|z1:t) > θdec then wdec = arg max
wi

P (wi|z1:t).

(7)
This belief threshold θdec is a free parameter that adjusts the
balance between decision time tdec and decision accuracy.

4) Active perception: Active perception uses a posterior-
dependent control policy π to move the sensor x ← x + π
during the perceptual process. For simplicity, we consider this
to depend only on an intermediate estimate of location

xest(t) = arg max
xl

P (xl|z1:t), (8)

from location beliefs summed over all identity classes

P (xl|z1:t) =

Nid∑
i=1

P (xl, wi|z1:t). (9)

Three control policies are considered, one active and the other
two passive:
1. Active ‘fixation point’ control [4]–[6] attempts to move the
sensor to a predefined fixation point xfix relative to the object
assuming it is at xest on the object,

x← x+ π (xest) , π(xest) = xfix − xest. (10)

Provided the fixation point is set to be a good location for per-
ception, the perception will progressively improve during the
decision making process from an initially unknown location
where perception may be poor.
2. Passive stationary perception never moves the sensor from
the initial location class where it contacts the object: π = 0.
3. Passive random perception moves the sensor randomly, with
uniform distribution ∆x ∼ U(1, xNloc

), p(x) = 1/Nloc (and
locations x defined modulo Nloc to keep within range).

Algorithm Active Bayesian perception

% Training
for i=1 to Nid do

for l=1 to Nloc do
Sample contact data z = {sk(j)} from class (xl,wi)
Pre-compute P (sk|xl, wi) using histogram method

end for
end for
% Testing
Initialize flat priors P (xl, wi|z0) = 1/NlocNid at t = 0
while maxi

∑
l P (xl, wi|z1:t) < θdec do

Update contact number t← t+ 1
Sample contact data zt = {sk(j)}
Compute likelihoods P (zt|xl, wi) using P (sk|xl, wi)
Bayesian belief update of P (xl, wi|z1:t)
Active control policy: x← x+ π (P (xl, wi|z1:t))
Re-align beliefs P (xl, wi|z1:t)← P (xl−∆l, wi|z1:t)

end while
Decision wdec = arg maxwi

∑
l P (xl, wi|z1:t)

After a move of ∆l location classes, the beliefs
P (xl, wi|z1:t) are kept aligned with the sensor by shifting the
class probabilities by the number of classes moved

P (xl, wi|z1:t)← P (xl−∆l, wi|z1:t) if 1 ≤ xl−∆l ≤ Nloc,

else P (xl, wi|z1:t)← P (x1, wi|z1:t) or P (xNloc
, wi|z1:t).

For simplicity, the (undetermined) probability shifted from
outside the location range is assumed uniform and given by the
existing probability at that extremity of the range (probabilities
are then renormalized to have unit sum).

5) Virtual environment validation: The aim of the data
collection is to make a ‘virtual environment’ in which gap
identification accuracy can be evaluated off-line. The identity
error is quantified with the mean absolute error

eid(x,w) = 〈|w − wdec|〉 , (11)

with the ensemble average 〈·〉 evaluated over all test runs with
the same true class (x,w). An overall measure of performance
averages these errors over all (x,w) classes

ēid =

Nid,Nloc∑
i,l=1

eid(xl, wi)

NidNloc
. (12)

The decision time tdec(x,w) and mean decision time t̄dec are
defined similarly.

A Monte Carlo validation ensures good statistics by aver-
aging errors over test data drawn randomly from all locations.
Typically, we averaged 5000 distinct Monte Carlo runs for
each value of the decision threshold θdec, randomly sampling
over all location and identity classes.

IV. RESULTS

A. Inspection of data

Contact data (Fig. 7) were collected while the TacTip
tactile fingertip tapped repeatedly against each of the test
objects, comprising 20 gaps of widths 0.25 mm to 5 mm in
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Fig. 7: Tactile data for TacTip contacting a single gap (0.25 mm width) over a 5.5 mm location range with 110 taps. The plots
show the pin sx-displacements (panel A) and sy-displacements (panel B). Taxels are colored according to their location on
the contact pad (color scheme in right panel).

Fig. 8: Tactile data for TacTip contacting 3 of the 20 gaps (widths 1 mm, 3 mm and 5 mm) at a vertical location of 4 mm (80th
tap). Taxel readings s are shown for the pin sx-displacements (panels A,B,C) and sy-displacements (panels D,E,F). Taxels are
colored by location on the contact pad (see Fig. 7).

0.25 mm steps. A 5.5 mm range of vertical displacements were
considered for the start (and end) position of each tap, using
110 taps separated by 0.05 mm depth (giving a total of 2200
discrete taps over all gaps). Pin displacements from individual
taps (visible in Fig. 8) typically take about 250 ms to reach
response peak amplitude, followed by a plateau for 250 ms
then a return to baseline also taking 250 ms. Contact features
from the stimulus are encoded in the time-series response of
each pin deflection, including its temporal dynamics and peak
value reached.

The vertical contact position of the TacTip relative to the
gap has a noticeable effect on both the peak sx and sy taxel
readings (Figs 7A,B). Taps with the greatest depth in the
location range are the strongest, decreasing smoothly towards
those of least depth, with an upper region of about 1.5 mm
(30 taps) where the TacTip does not contact the surface.

At first sight, the gap width does not noticably affect the
two-dimensional time series of sx and sy taxel displacements
(Fig. 8) for 3 gaps (1 mm, 3 mm, 5 mm) spaced across the 20
test gaps. However, closer inspection reveals subtle changes in
the relative pin displacements that could indicate differences
in gap width. The effect of these differences in pin deflection
is analyzed in the following results.

B. Active and passive perception of gap width

The accuracy of the TacTip for gap inspection is assessed
with both active and passive robot perception (closed- and
open-loop control policies). We use a Bayesian perception
method that updates the posterior beliefs for Nid = 20

identity (gap width) classes and Nloc = 11 location (depth)
classes until a belief on an identity class reaches decision
threshold. This belief threshold determines both the decision
time tdec, or number of contacts to make a decision, and also
the identification accuracy eid. Results are generated with a
Monte Carlo procedure using the data as a virtual environment
(Sec. III-B5).

For both active and passive perception, the mean errors for
gap width ēid (averaged over initial location and identity) de-
crease with increasing mean decision times t̄dec to reach close
to minimum asymptote after ∼8-12 contacts (Fig. 9). This
tradeoff between mean decision duration and accuracy follows
from standard decision theory, since accuracy improves as
more evidence is used to form a decision.

Comparison of best accuracies for estimating gap width
shows that active perception with a fixation control policy is
best, with mean error eid ∼ 0.35 mm (1.3 identity classes)
over 8-12 taps (with fixation depth xfix = 4.75 mm). Passive
perception with a random policy is next best, with mean error
eid ∼ 0.6 mm (2.2 identity classes) over 8-12 taps. Passive
perception with a stationary control policy is worst, with mean
error eid ∼ 0.8 mm (3.2 identity classes) over 8-12 taps.

These decision errors are with no information about the
initial contact depth of the sensor relative to the test object.
Active perception uses intermediate information about depth
during decision formation to guide the sensor to a good
location, enabling accurate inspection of the gap width.

Therefore provided the sensor can be actively controlled to
contact the test gap at optimal contact depth, then the mean
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Fig. 9: Gap width accuracy for active (blue) and passive
random (green) or stationary (red curve) perception. Mean
errors ēid are plotted against mean decision time t̄dec. Results
are averaged over all stimuli and initial contact locations, with
5000 Monte Carlo iterations per data point.

Fig. 10: Dependence of mean error ēid on fixation point of
the active control policy over a range of decision times (grey
shading). The optimal perceptual accuracy (after 12 taps) is
at the fixation point shown by the red dashed line (xfix =
4.75 mm), which is the fixation point used in Fig. 9.

identity (gap width) error can approach ēid ∼ 0.35 mm over
the 0.25-5 mm range of widths.

C. Optimal fixation depth for active perception

Active perception with a fixation point control policy is the
most accurate method for assessing gap width, compared to
passive methods for perception. However, the control policy
is specified by a free parameter, the fixation depth, which
was assumed to be at an optimal depth for the perception.
This dependence of perception on fixation depth is now
examined, to justify this assumption and determine the optimal
contact depth. Results are again generated with a Monte Carlo
procedure similarly to Sec. IV-C, now with the fixation point
varied across the range of depth locations.

Probing active perception over contact depth, the gap width
mean errors ēid vary strongly with fixation point xfix over
the depth location range (Fig. 10; gray shading denotes mean
decision time t̄dec corresponding to the x-axis on Fig. 9).

Fig. 11: Dependence of gap width estimation error ēid on
uncertainty placing the sensor laterally relative to the gap.
The performance degradation is represented by the ratio of the
estimation error to that of the noise-free case ēid(σ)/ēid(0),
for lateral uncertainty distributed over [−σ, σ] mm.

The best fixation depths are at the deepest contacts (rightmost
range), and the poorest at depths where the fingertip contacts
weakly or not at all (leftmost range). The optimal location for
fixation is shown (red dashed line at 4.75 mm), corresponding
to the location class with lowest mean error after 12 taps,
which was used to generate the results in Fig. 9 (Sec. IV-B).

D. Dependence on positioning uncertainty
Finally, we examine how the above results depend on the

accuracy of sensor placement over the gap. Thus far we have
considered positioning uncertainty only in depth, which is
controlled through active perception to give the lowest mean
error ēid ∼ 0.35 mm after 8-12 contacts (Fig. 9). However, in
a realistic scenario there may also be uncertainty placing the
sensor laterally across the gap.

The experiments and analysis from Secs IV-B, IV-C are
repeated with noise in the test data from randomly varying
the lateral placement of the sensor relative to the gap (here
sampled from a uniform distribution [−σ, σ]). Four magni-
tudes of noise are considered: σ = 0.25, 0.5, 1.0, 2.0 mm. An
identical analysis to Sec. IV-B can then be carried out on these
datasets, which is summarized by the mean errors ēid(σ) over
8-12 contacts. These errors are displayed relative to the noise-
free case ēid(σ)/ēid(0) (Fig. 11).

Noise in the lateral placement of the sensor degrades the
performance of gap width estimation ēid. The performance de-
creases with increasing noise (Fig. 11), with estimation errors
doubling for σ = 2 mm. For noise magnitude σ ≤ 0.5 mm,
gap width estimation is within 25% of the noise-free case.

Our purpose here is to verify that the methods are robust
to (moderate) amounts of noise in positioning the sensor in a
direction not controlled by active perception. Similar results
should apply also to noise in pose (roll, pitch and yaw). In
general, we expect a smooth degradation of estimation perfor-
mance with increasing location uncertainty. If the degradation
becomes too large, then active perception could be applied in
the direction causing the uncertainty to reduce this source of
error in the estimation performance.
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V. DISCUSSION

In this study, we demonstrated that narrow gaps (0.25 mm to
5 mm) could be inspected to high (ēid ∼ 0.35 mm) accuracy
with a biomimetic tactile fingertip (the TacTip) mounted as
an end-effector on a robot arm. This accuracy was attained
under uncertainty about the location of the gap relative to the
sensor, by using active touch to control sensor position during
decision making of gap width. This accuracy is superresolved
compared to the 4 mm sensor resolution given by the spacing
between pins on the sensor [7].

Our attained accuracy rivals that of human touch. With
static (∼1 sec) touches against embossed spatial patterns,
subjects estimated relative interval size to 0.3 mm and Vernier
alignment to 0.4 mm [24]. (Vernier acuity refers to separation
of two parallel lines, analogous to gap width.) Biomimetic
superresolution is thus analogous to human tactile hyperacuity,
which is typically an order of magnitude better than the two-
point discrimination interval (∼3 mm) and the density of (type
SA-I) mechanoreceptors in the human fingertip (∼70/cm2).

Can this inspection accuracy be improved? Finer acuity
could arise from modifying the sensor hardware and percep-
tion method, to go beyond human performance. A miniaturized
TacTip [18] would better detect smaller features, compared
with the 40 mm diameter device considered here. Also, other
exploratory procedures could be superior to taps, related to
how humans tailor tactile exploration to the task at hand [25].
With these improvements, we expect an identification accuracy
.100µm is readily attainable, and possibly far finer.

For an effective quality control system in practice, the active
perception of gap width would need to be combined with
guidance systems to probe the entire product/vehicle. One
method to achieve this exploration would be to use 3D vision
systems to identify locations of interest (e.g. joins between
panels); the tactile sensor could then be moved to each of
these locations, after which the closed loop tactile control takes
over to fine tune the sensor location for optimal perception.
A complementary method for exploration would be to use the
tactile sensor to autonomously track edges or other surface
features, as can be achieved with related methods for tactile
contour following [26].

Therefore we conclude that an artificial tactile system of the
type proposed here can offer an accurate and reliable solution
to automated quality control on the production line. For
the best accuracies, closed-loop active feedback is necessary
to control the contact depth of the tactile sensor against
the surface. The entire system can be implemented with an
inexpensive 3D-printed tactile sensor mounted as end-effector
on an industrial robot arm.

VI. CONCLUSION

This study demonstrates tactile quality control at an accu-
racy comparable to human performance with an inexpensive,
biomimetic fingertip (the TacTip) mounted as an end-effector
on an industrial robot arm. The performance relies on using
active perception to control the location of the sensor relative
to the test object. We conclude that an artificial tactile system
of the type proposed here can offer an accurate and reliable
solution to automated quality control on the production line.
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